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Exercise 1: Data Structures - Heapsort (2+2+2+2+2 Points)

We can employ a binary min-heap to sort a sequence of n distinct keys in an ascending order as
follows. First, we insert all keys one by one with the Insert operation. Then, we obtain the sorted
sequence by removing all n keys with Delete-Min.

(a) Show that Heapsort takes Θ(n log n) if the input sequence is sorted descending.

(b) Show that Heapsort takes Θ(n log n) if the input sequence is sorted ascending.

Assume that you have two binary min-heaps that only allow manipulation via the operations Get-Min,
Insert, Delete-Min, Decrease-Key, Get-Size and Is-Empty and may have duplicate keys.

(c) Give a protocol that merges two heaps of size n and m, where m < n, in time O(m log n) and
prove the runtime.

(d) For arbitrary m and n, where m < n, give two binary min-heaps of size m and n where the
Merge protocol takes Ω(m log n).

(e) For arbitrary m and n, where m < n, give two binary min-heaps of size m and n where the
Merge protocol takes O(m).

Exercise 2: Union-Find (5+5 Points)

(a) In the lecture the union-by-size heuristic was introduced to guarantee shallow trees when imple-
menting a Union-Find data structure. Another heuristic that can be used for union(x,y) is the
union-by-rank heuristic. For the heuristic, the rank of a tree is defined as follows:

(1) The rank r(T ) of a tree T consisting of only one node is 0.

(2) When joining trees T1 and T2 by attaching the root of tree T2 as a new child of the root of
tree T1, the rank of the new combined tree T is defined as r(T ) := max{r(T1), r(T2) + 1}.

When applying the union-by-rank heuristic, whenever combining two trees into one tree (as the
result of a union operation), we attach the tree of smaller rank to the tree of larger rank (if both
trees have the same rank, it does not matter which tree is attached to the other tree). Provide
pseudo-code for the union(x,y) operation when using the union-by-rank heuristic.

Show that when implementing a Union-Find data structure by using disjoint-set forests with the
union-by-rank heuristic, the height of each tree is at most O(log n).

(b) Demonstrate that the above analysis is tight by giving an example execution (of merging n elements
in that data structure) that creates a tree of height Θ(log n). Can you even get a tree of height
blog2 nc?
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Exercise 3: Max Flow (6 Points)

You are given a (connected) directed graph G = (V,E), with positive integer capacities on each edge, a
designated source s ∈ V , and a designated sink t ∈ V . Additionally you are given a current maximum
s− t flow f : E → N.
Now suppose we increase the capacity of one specific edge e0 ∈ E by one unit. Show how to find a
maximum flow in the resulting graph with the manipulated capacity in time O(|E|).

Exercise 4: Network Flow (4+4+6 Points)

Professor Adam has two children who, unfortunately, dislike each other. The problem is so severe
that not only do they refuse to walk to school together, but in fact each one refuses to walk on any
street that the other child has used. The children have no problem with their paths crossing at street
intersections. Fortunately both the professor’s house and the only school in town are on intersections,
but beyond that he is not sure if it is going to be possible to send both of his children to the only
school in town. The professor has a map of his town given as a graph G = (V,E), where E are the
streets and V are the intersections.

(a) Show how to formulate the problem of determining whether both his children can go to the school
in town as a maximum flow problem.

(b) What algorithm from the lecture would you use to solve the problem? Assuming that for a street
network G = (V,E), we have |E| ≤ 3|V |, what is the asymptotic running time of your algorithm
as a function of the number of nodes n = |V |?

(c) Now, assume that the two children start disliking each other even more and they now only accept
to go to the school if their walks also avoid crossing some of the intersections. Assume that we
are given a subset U ⊆ V of intersections and we now need to find two paths from the professor’s
home to the school such that every intersection in U and every street is part of at most one of the
two paths. You can of course assume that the professor’s home and the school are not in U .

How can you now reduce the problem to a maximum flow problem?
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